"элементы теории множеств". Теория множеств На множество различных моментов начиная

По образованию я физик-теоретик, однако имею неплохую математическую базу. В магистратуре одним из предметов была философия, необходимо было выбрать тему и сдать по ней работу. Поскольку большинство вариантов не единожды было обмусолено, то решил выбрать что-то более экзотическое. На новизну не претендую, просто получилось аккумулировать всю/почти всю доступную литературу по этой теме. Философы и математики могут кидаться в меня камнями, буду лишь благодарен за конструктивную критику.

P.S. Весьма «сухой язык», но вполне читабельно после университетской программы. По большей части определения парадоксов брались из Википедии (упрощённая формулировка и готовая TeX-разметка).

Введение

Как сама теория множеств, так и парадоксы, ей присущие, появились не так уж и давно, чуть более ста лет назад. Однако за этот период был пройден большой путь, теория множеств так или иначе фактически стала основой большинства разделов математики. Парадоксы же её, связанные с бесконечностью Кантора, были успешно объяснены буквально за половину столетия.

Следует начать с определения.

Что есть множество? Вопрос достаточно простой, ответ на него вполне интуитивен. Множество это некий набор элементов, представляемый единым объектом. Кантор в своей работе Beiträge zur Begründung der transfiniten Mengenlehre даёт определение: под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M). Как видим, суть не изменилась, разница лишь в той части, которая зависит от мировоззрения определяющего. История же теории множеств как в логике так и в математике весьма противоречива. Фактически начало ей положил Кантор в XIX веке, далее Рассел и остальные продолжили работу.

Парадоксы (логики и теории множеств) - (греч. - неожиданный) - формально-логические противоречия, которые возникают в содержательной множеств теории и формальной логике при сохранении логической правильности рассуждения. Парадоксы возникают тогда, когда два взаимоисключающих (противоречащих) суждения оказываются в равной мере доказуемыми. Парадоксы могут появиться как в пределах научной теории, так и в обычных рассуждениях (например, приводимая Расселом перифраза его парадокса о множестве всех нормальных множеств: «Деревенский парикмахер бреет всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя?»). Поскольку формально-логическое противоречие разрушает рассуждение как средство обнаружения и доказательства истины (в теории, в которой появляется парадокс, доказуемо любое, как истинное, так и ложное, предложение), возникает задача выявления источников подобных противоречий и нахождения способов их устранения. Проблема философского осмысления конкретных решений парадоксов - одна из важных методологических проблем формальной логики и логических оснований математики.

Целью данной работы является изучение парадоксов теории множеств как наследников античных антиномий и вполне логичных следствий перехода к новому уровню абстракции - бесконечности. Задача - рассмотреть основные парадоксы, их философскую интерпретацию.

Основные парадоксы теории множеств

Брадобрей бреет только тех людей, которые не бреются сами. Бреет ли он себя?
Продолжим кратким экскурсом в историю.

Некторые из логических парадоксов были известны с античных времён, однако по причине того, что математическая теория ограничивалась одной лишь арифметикой и геометрией, соотнести их с теорией множеств было невозможно. В XIX веке ситуация изменилась коренным образом: Кантор в своих работах вышел на новый уровень абстракции. Он ввёл понятие бесконечности, создав тем самым новый раздел математики и позволив тем самым сравнивать различные бесконечности с помощью понятия «мощность множества» . Однако тем самым он породил множество парадоксов. Самым первым является так называемый парадокс Бурали-Форти . В математической литературе встречаются различные формулировки, опирающиеся на разную терминологию и предполагаемый набор известных теорем. Вот одно из формальных определений.

Можно доказать, что если x - произвольное множество порядковых чисел, то множество-сумма есть порядковое число, большее или равное каждому из элементов x . Предположим теперь, что - множество всех порядковых чисел. Тогда - порядковое число, большее или равное любому из чисел в . Но тогда и - порядковое число, причём уже строго большее, а значит, и не равное любому из чисел в . Но это противоречит условию, по которому - множество всех порядковых чисел.

Сущность же парадокса в том, что при образовании множества всех порядковых чисел образуется новый порядковый тип, которого ещё не было среди «всех» трансфинитных порядковых чисел, существовавших до образования множества всех порядковых чисел. Этот парадокс был обнаружен самим Кантором, независимо открыт и опубликован итальянским математиком Бурали-Форти, ошибки же последнего были исправлены Расселом, после чего формулировка приобрела окончательный вид .

Среди всех попыток избежать подобных парадоксов и в какой-то мере попробовать их объяснить наибольшего внимания заслуживает идея уже упомянутого Рассела. Он предложил исключить из математики и логики импредикативные предложения, в которых определение элемента множества зависит от последнего, что и вызывает парадоксы. Правило звучит так: «никакое множество С не может содержать элементов m, определяемых лишь в терминах множества С, а так же элементов n, предполагающих в своём определении это множество» . Подобное ограничение определения множества позволяет избежать парадоксов, но при этом значительно сужает область его применения в математике. Вдобавок этого недостаточно для объяснения их природы и причин появления, коренящихся в дихотомии мышления и языка, в особенностях формальной логики . В какой-то мере в данном ограничении можно проследить аналогию с тем, что в более поздний период когнитивные психологи и лингвисты начали называть «категоризацией основного уровня»: определение сведено к наиболее легкой для понимания и изучения концепцией.

Предположим, что множество всех множеств существует. В этом случае справедливо , то есть всякое множество t является подмножеством V. Но из этого следует - мощность любого множества не превосходит мощности V. Но в силу аксиомы множества всех подмножеств, для V, как и любого множества, существует множество всех подмножеств , и по теореме Кантора , что противоречит предыдущему утверждению. Следовательно, V не может существовать, что вступает в противоречие с «наивной» гипотезой о том, что любое синтаксически корректное логическое условие определяет множество, то есть что для любой формулы A, не содержащей y свободно. Замечательное доказательство отсутствия подобных противоречий на основе аксиоматизированной теории множеств Цермело-Френкеля приводится у Поттера .

Оба вышеуказанных парадокса с логической точки зрения идентичны «Лжецу» либо «Брадобрею»: высказываемое суждение обращено не только на нечто объективное по отношению к нему, но и само на себя. Однако следует обращать внимание не только на логическую сторону, но и на понятие бесконечности, которое тут наличествует. В литературе ссылаются на работу Пуанкаре, в которой он пишет: «вера в существование актуальной бесконечности… делает необходимым эти непредикативные определения"" .
В целом же имеют место основные моменты :

  • в данных парадоксах нарушается правило чётко разделять „сферы“ предиката и субъекта; степень смешения близка к подмене одного понятия другим;
  • обычно в логике предполагается, что в процессе рассуждения субъект и предикат сохраняют свой объём и содержание, в данном же случае происходит
    переход из одной категории в другую, что даёт в результате несоответствие;
  • наличие слова „все“ имеет смысл для конечного числа элементов, в случае же бесконечного их количества возможно наличие такого, которое
    для определения себя потребует определение множества;
  • нарушаются основные логические законы:
    • закон тождества нарушается тогда, когда обнаруживается нетождественность себе субъекта и предиката;
    • закон противоречия - когда с одинаковым правом выводятся два противоречащих друг другу суждения;
    • закон исключённого третьего - когда это третье приходится признавать, а не исключать, поскольку ни первое, ни второе не могут быть признаны одно без другого, т.к. они оказываются одинаково правомерными.
Третий парадокс носит имя Рассела . Один из вариантов определения приведён далее.
Пусть K - множество всех множеств, которые не содержат себя в качестве своего элемента.Содержит ли K само себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K - противоречие.Если нет - то, по определению K, оно должно быть элементом K - вновь противоречие. Данное утверждение логически выводится из парадокса Кантора, что показывает их взаимосвязь. Однако философская сущность проявляется более чётко, поскольку „самодвижение"" понятий происходит прямо “на наших глазах» .

Парадокс Тристрама Шенди:
В романе Стерна «Жизнь и мнения Тристрама Шенди, джентльмена» герой обнаруживает, что ему потребовался целый год, чтобы изложить события первого дня его жизни, и еще один год понадобился, чтобы описать второй день. В связи с этим герой сетует, что материал его биографии будет накапливаться быстрее, чем он сможет его обработать, и он никогда не сможет ее завершить. «Теперь я утверждаю, - возражает на это Рассел, - что если бы он жил вечно и его работа не стала бы ему в тягость, даже если бы его жизнь продолжала быть столь же богатой событиями, как вначале, то ни одна из частей его биографии не осталась бы ненаписанной».
Действительно, события n-го дня Шенди мог бы описать за n-й год и, таким образом, в его автобиографии каждый день оказался бы запечатленным.

Иначе говоря, если бы жизнь длилась бесконечно, то она насчитывала бы столько же лет, сколько дней.

Рассел проводит аналогию между этим романом и Зеноном с его черепахой. По его мнению решение лежит в том, что целое эквивалентно его части в бесконечности. Т.е. к противоречию приводит только «аксиома здравого смысла» . Однако же разрешение проблемы лежит в области чистой математики. Очевидно, что имеется два множества - года и дни, между элементами которых установлено взаимно-однозначное соответствие - биекция. Тогда при условии бесконечной жизни главного героя имеется два бесконечных равномощных множества, что, если рассматривать мощность как обобщение понятия количества элементов в множестве, разрешает парадокс.

Парадокс (теорема) Банаха-Тарского или парадокс удвоения шара - теорема в теории множеств, утверждающая, что трёхмерный шар равносоставлен двум своим копиям.
Два подмножества евклидова пространства называются равносоставленными, если одно можно разбить на конечное число частей, передвинуть их, и составить из них второе.
Более точно, два множества A и B являются равносоставленными, если их можно представить как конечное объединение непересекающихся подмножеств так, что для каждого i подмножество конгруэнтно .

Если же пользоваться теоремой выбора, то определение звучит так:
Аксиома выбора подразумевает, что существует разбиение поверхности единичной сферы на конечное количество частей, которые преобразованиями трёхмерного Евклидова пространства, не меняющими форму этих составляющих, могут быть собраны в две сферы единичного радиуса.

Очевидно, что при требовании для данных частей быть измеримыми, данное постоение неосуществимо. Известный физик Ричард Фейнман в своей биографии рассказывал, как в своё время у него получилось победить в споре о разбиении апельсина на конечное количество частей и пересоставлении его .

В определённых моментах этот парадокс используется для опровержения аксиомы выбора, однако проблема в том, что то, что мы считаем элементарной геометрией, - несущественно. Те понятия, которые мы считаем интуитивными, должны быть расширены до уровня свойств трансцендентных функций .

Чтобы и дальше ослабить уверенность тех, кто считает аксиому выбора неверной, следует упомянуть теорему Мазуркевича и Серпинского, которая утверждает, что существует непустое подмножество Е Евклидовой плоскости, которое имеет два непересекающихся подмножества, каждое из которых может быть разбито на конечное количество частей, так что их можно перевести изометриями в покрытие множества Е.
При этом доказательство не требует использования аксиомы выбора.
Дальнейшие же построения на основе аксиомы определённости дают разрешение парадокса Банаха-Тарского, но не представляют такого интереса .

  • Парадокс Ришара: требуется назвать «наименьшее число, не названное в этой книге». Противоречие в том, что с одной стороны, это можно сделать, так как есть наименьшее число, названное в этой книге. Исходя из него, можно назвать и наименьшее неназванное. Но тут возникает проблема: континуум является несчётным, между двумя любыми числами можно вставить ещё бесконечное множество промежуточных чисел. С другой стороны, если бы мы могли назвать это число, оно автоматически бы перешло из класса неупомянутых в книге, в класс упомянутых .
  • Парадокс Греллинга-Нильсона: слова либо знаки могут обозначать какое-либо свойство и при этом иметь его или нет. Самая тривиальная формулировка звучит так: является ли слово «гетерологичный» (что означает «неприменимый к самому себе»), гетерологичным?.. Весьма схож с парадоксом Рассела в связи с наличием диалектического противоречия: нарушается двойственность формы и содержания. В случае со словами, имеющими высокий уровень абстракции, невозможно решить, являются ли эти слова гетерологичными .
  • Парадокс Сколема: используя теорему Гёделя о полноте и теорему Лёвенхейма-Сколема получаем, что аксиоматическая теория множеств остаётся истинной и тогда, когда будет предполагаться (иметься) для её интерпретации только счётная совокупность множеств. В то же время
    аксиоматическая теория включает в себя уже упомянутую теорему Кантора, что приводит нас к несчётным бесконечным множествам.

Разрешение парадоксов

Создание теории множеств породило то, что считают третьим кризисом математики, который до сих пор не был разрешён удовлетворительно для всех .
Исторически сложилось, что первым подходом был теоретико-множественный. Он основывался на использовании актуальной бесконечности, когда считалось, что любая бесконечная последовательность является завершённой в бесконечности. Идея заключалась в том, что в теории множеств часто приходилось оперировать множествами, которые могли являться части других, более обширных множеств. Успешные действия в таком случае были возможны лишь в одном случае: данные множества (конечные и бесконечные) завершены. Определённый успех был очевиден: аксиоматическая теория множеств Цермело-Френкеля, целая школа математики Николя Бурбаки, которая существует уже больше половины столетия и до сих пор вызывает множество критики.

Логицизм был попыткой свести всю известную математику к терминам арифметики, а потом термины арифметики свести к понятиям математической логики. Вплотную этим занялся Фреге, однако после окончания работы над трудом, он вынужден был указать о своей несостоятельности, после того, как Рассел указал на имеющиеся в теории противоречия. Тот же Рассел, как уже был упомянуто ранее, попытался исключить использование импредикативных определений с помощью «теории типов». Однако его понятия множества и бесконечности, а так же аксиома сводимости оказались нелогичными. Основной проблемой было то, что не учитывались качественные различия между формальной и математической логикой, а так же наличие лишних понятий, в том числе и интуитивного характера.
В итоге теория логицизма не смогла устранить диалектических противоречий парадоксов, связанных с бесконечностью. Имели место лишь принципы и методы, которые позволяли избавиться хотя бы от непредикативных определений. В свох же рассуждениях Рассел был наследником Кантора

В конце XIX - начале XX в. распространение формалистической точки зрения на математику было связано с развитием аксиоматического метода и той программой обоснования математики, которую выдвинул Д. Гильберт. На степень важности этого факта указывает то, что первой проблемой из двадцати трёх, которые он поставил перед математическим сообществом, была проблема бесконечности. Формализация была необходима для доказательства непротиворечивости классической математики, «исключив при этом из неё всю метафизику». Учитывая средства и методы, которыми пользовался Гильберт, его цель оказалась принципиально невыполнимой, но его программа имела огромное влияние на все последующее развитие оснований математики. Гильберт достаточно долго работал над этой проблемой, построив первоначально аксиоматику геометрии. Поскольку решение проблемы оказалось достаточно успешным, он решил применить аксиоматический метод к теории натуральных чисел. Вот что он писал в связи с этим: «Я преследую важную цель: именно я хотел бы разделаться с вопросами обоснования математики как таковыми, превратив каждое математическое высказывание в строго выводимую формулу.» От бесконечности при этом планировалось избавиться с помощью сведения её к некому конечному числу операций. Для этого он обращался к физике с её атомизмом, дабы показать всю несостоятельность бесконечных величин. Фактически Гильберт поставил вопрос о соотношении теории и объективной реальности.

Более или менее полное представление о финитных методах дает ученик Гильберта Ж. Эрбран. Под финитными рассуждениями он понимает такие рассуждения, которые удовлетворяют следующим условиям: логические парадоксы " - всегда рассматривается лишь конечное и определенное число предметов и функций;

Функции имеют точное определение, и это определение позволяет нам вычислить их значение;

Никогда не утверждается «Этот объект существует», если не известен способ его построения;

Никогда не рассматривается множество всех предметов X какой-либо бесконечной совокупности;

Если известно, что какое-либо рассуждение или теорема верны для всех этих X, то это означает, что это общее рассуждение можно повторить для каждого конкретного X, причем само это общее рассуждение следует рассматривать только как образец для проведения таких конкретных рассуждений."

Однако в момент последней публикации в этой области Гёдель уже получил свои результаты, в сущности опять обнаружил и утвердил наличие диалектики в процессе познания. По сути своей дальнейшее развитие математики продемонстрировало несостоятельность программы Гильберта.

Что же, собственно, доказал Гёдель? Можно выделить три основных результата:

1. Гёдель показал невозможность математического доказательства непротиворечивости любой системы, достаточно обширной, чтобы включать в себя всю арифметику, доказательства, которое не использовало бы каких-либо иных правил вывода, кроме тех, что имеются в самой данной системе. Такое доказательство, которое использует более мощное правило вывода, может оказаться полезным. Но если эти правила вывода сильнее логических средств арифметического исчисления, то уверенности в непротиворечивости используемых в доказательстве допущений не будет. Во всяком случае, если используемые методы не будут финитистскими, то программа Гильберта окажется невыполнимой. Гёдель как раз и показывает несостоятельность расчетов на нахождение финитистского доказательства непротиворечивости арифметики.
2. Гёдель указал на принципиальную ограниченность возможностей аксиоматического метода: система Principia Mathematica, как и всякая иная система, с помощью которой строится арифметика, существенно неполна, т. е. для любой непротиворечивой системы арифметических аксиом имеются истинные арифметические предложения, которые не выводятся из аксиом этой системы.
3. Теорема Гёделя показывает, что никакое расширение арифметической системы не может сделать ее полной, и даже если мы наполним ее бесконечным множеством аксиом, то в новой системе всегда найдутся истинные, но не выводимые средствами этой системы положения. Аксиоматический подход к арифметике натуральных чисел не в состоянии охватить всю область истинных арифметических суждений, и то, что мы понимаем под процессом математического доказательства, не сводится к использованию аксиоматического метода. После теоремы Гёделя стало бессмысленно рассчитывать, что понятию убедительного математического доказательства можно будет придать раз и навсегда очерченные формы.

Последним в этой череде попыток объяснить теорию множеств был интуиционизм.

Он прошел ряд этапов в своей эволюции - полуинтуиционизм, собственно интуиционизм, ультраинтуиционизм. На разных этапах математиков волновали разные проблемы, но одной из основных проблем математики является проблема бесконечности. Математические понятия бесконечности, непрерывности служили предметом философского анализа с момента их появления (идеи атомистов, апории Зенона Элейского, инфинитезимальные методы в античности, исчисление бесконечно малых в Новое время и пр.). Наибольшие споры вызывало применение различных видов бесконечности (потенциальной, актуальной) как математических объектов и их интерпретация. Все эти проблемы, на наш взгляд, были порождены более глубокой проблемой - о роли субъекта в научном познании. Дело в том, что состояние кризиса в математике порождено эпистемологической неопределенностью соизмерения мира объекта (бесконечности) и мира субъекта. Математик как субъект имеет возможность выбора средств познания - или потенциальной, или актуальной бесконечности. Применение потенциальной бесконечности как становящейся, дает ему возможность осуществлять, конструировать бесконечное множество построений, которые можно надстраивать над конечными, не имея конечного шага, не завершая построение, оно только возможно. Применение актуальной бесконечности дает ему возможность работать с бесконечностью как с уже осуществимой, завершенной в своем построении, как актуально данной одновременно.

На этапе полуинтуиционизма проблема бесконечности еще не была самостоятельной, а была вплетена в проблему построения математических объектов и способов его обоснования. Полуинтуиционизм А. Пуанкаре и представителей парижской школы теории функций Бэра, Лебега и Бореля был направлен против принятия аксиомы свободного выбора, с помощью которой доказывается теорема Цермело, утверждавшая, что всякое множество можно сделать вполне упорядоченным, но без указания теоретического способа определения элементов любого подмножества искомого множества. Нет способа построения математического объекта, нет и самого математического объекта. Математики считали, что наличие или отсутствие теоретического способа построения последовательности объектов исследования может служить основой обоснования или опровержения этой аксиомы. В российском варианте полуинтуиционистская концепция в философских основаниях математики получила развитие в таком направлении, как эффективизм, развиваемый Н.Н. Лузиным. Эффективизм представляет собой оппозицию к основным абстракциям учения множества Кантора о бесконечном - актуальности, выбора, трансфинитной индукции и др.

Для эффективизма гносеологически более ценными абстракциями является абстракция потенциальной осуществимости, чем абстракция актуальной бесконечности. Благодаря этому становится возможным введение понятия о трансфинитных ординалах (бесконечных порядковых числах) на основе эффективного понятия о росте функций. Гносеологическая установка эффективизма для отображения непрерывного (континуума) опиралась на дискретные средства (арифметики) и созданную Н.Н.Лузиным дескриптивную теорию множеств (функций). Интуиционизм голландца Л. Э. Я. Брауэра, Г. Вейля, А. Гейтинга в качестве традиционного объекта исследования видит свободно становящиеся последовательности различных видов. На этом этапе, решая собственно математические проблемы, в том числе о перестройке всей математики на новой основе, интуиционисты подняли философский вопрос о роли математика как познающего субъекта. Каково его положение, где он более свободен и активен в выборе средств познания? Интуиционисты первыми (и на этапе полуинтуиционизма) стали критиковать концепцию актуальной бесконечности, канторовскую теорию множеств, усмотрев в ней ущемление возможностей субъекта влиять на процесс научного поиска решения конструктивной задачи. В случае использования потенциальной бесконечности субъект себя не обманывает, так как для него идея потенциальной бесконечности интуитивно значительно яснее, чем идея актуальной бесконечности. Для интуициониста объект считается существующим, если он дан непосредственно математику или известен метод его построения, конструирования. Субъект в любом случае может приступить к процессу достраивания ряда элементов своего множества. Непостроенный объект для интуиционистов не существует. В то же время субъект, работающий с актуальной бесконечностью, будет лишен этой возможности и будет чувствовать двойную уязвимость принятой позиции:

1) никогда нельзя осуществить это бесконечное построение;
2) он принимает решение оперировать с актуальной бесконечностью как с конечным объектом и в этом случае теряет свою специфику понятия бесконечности. Интуиционизм сознательно ограничивает возможности математика тем, что тот может осуществлять построение математических объектов исключительно посредством таких средств, которые хотя и получаемы с помощью абстрактных понятий, но эффективны, убедительны, доказуемы, функционально конструктивны именно практически и сами интуитивно ясны как конструкции, построения, надежность которых на практике не вызывает никаких сомнений. Интуиционизм, опираясь на понятие потенциальной бесконечности и конструктивные методы исследования, имеет дело с математикой становления, теория множеств относится к математике бытия.

Для интуициониста Брауэра как представителя математического эмпиризма логика вторична, он критикует ее и закон исключённого третьего.

В своих отчасти мистических работах он не отрицает наличие бесконечности, однако не допускает её актуализации, лишь потенциализацию. Главное для него - интерпретация и обоснование практически используемых логических средств и математических рассуждений. Принятое интуиционистами ограничение преодолевает неопределенность использования понятия бесконечности в математике и выражает стремление преодолеть кризис в основании математики.

Ультраинтуиционизм (А.Н. Колмогоров, А.А.Марков и др.) - последняя стадия развития интуиционизма, на которой модернизируются, существенно дополняются и преобразуются основные его идеи, не изменяя его сущности, но преодолевая недостатки и усиливая позитивные стороны, руководствуясь критериями математической строгости. Слабостью подхода интуиционистов было узкое понимание роли интуиции как единственного источника обоснования правильности и эффективности математических методов. Принимая «интуитивную ясность» в качестве критерия истинности в математике, интуиционисты методологически обедняли возможности математика как субъекта познания, сводили его деятельность лишь к мыслительным операциям на основе интуиции и не включали практику в процесс математического познания. Ультраинтуиционистская программа обоснования математики является российским приоритетом. Поэтому отечественные математики, преодолевая ограниченность интуиционизма, принимали действенной методологию материалистической диалектики, признающей человеческую практику источником формирования как математических понятий, так и математических методов (умозаключений, построений). Проблему существования математических объектов ультраинтуиционисты решали, опираясь уже не на неопределяемое субъективное понятие интуиции, а на математическую практику и конкретный механизм построения математического объекта - алгоритм, выражаемый вычислимой, рекурсивной функцией.

Ультраинтуиционизм усиливает достоинства интуиционизма, заключающиеся в возможности упорядочивания и обобщения приемов решения конструктивных проблем, употребляемых математиками любого направления. Поэтому интуиционизм последней стадии (ультраинтуиционизм) близок конструктивизму в математике. В гносеологическом аспекте основные идеи и принципы ультраинтуиционизма таковы: критика классической аксиоматики логики; использование и значительное усиление (по явному указанию А.А. Маркова) роли абстракции отождествления (мысленного отвлечения от несходных свойств предметов и одновременного вычленения общих свойств предметов) как способа построения и конструктивного понимания абстрактных понятий, математических суждений; доказательство непротиворечивости непротиворечивых теорий. В формальном аспекте применение абстракции отождествления оправдывается тремя ее свойствами (аксиомами) равенства - рефлексивности, транзитивности и симметрии.

Для решения основного противоречия в математике по проблеме бесконечности, породившего кризис ее оснований, на этапе ультраинтуиционизма в работах А.Н. Колмогорова были предложены пути выхода из кризиса посредством решения проблемы отношений между классической и интуиционистской логикой, классической и интуиционистской математикой. Интуиционизм Брауэра в целом отрицал логику, но так как любой математик не может обойтись без логики, в интуиционизме все-таки сохранилась практика логических рассуждений, допускались некоторые принципы классической логики, имеющей в качестве своей базы аксиоматику. С.К. Клини, Р. Весли даже отмечают, что интуиционистскую математику можно описать в виде некоторого исчисления, а исчисление является способом организации математического знания на основах логики, формализации и ее формы - алгоритмизации. Новый вариант соотношения логики и математики в рамках интуиционистских требований к интуитивной ясности суждений, особенно тех, которые включали отрицание, А.Н. Колмогоров предложил следующим образом: интуиционистскую логику, тесно связанную с интуиционистской математикой, он представил в форме аксиоматического импликативного минимального исчисления высказываний и предикатов. Тем самым ученый представил новую модель математического знания, преодолевающую ограниченность интуиционизма в признании лишь интуиции как средства познания и ограниченность логицизма, абсолютизирующего возможности логики в математике. Эта позиция позволила в математической форме продемонстрировать синтез интуитивного и логического как основы гибкой рациональности и ее конструктивной эффективности.

Выводы. Таким образом, эпистемологический аспект математического познания позволяет оценить революционные изменения на этапе кризиса оснований математики на рубеже XIX-XX вв. с новых позиций в понимании процесса познания, природы и роли субъекта в нем. Гносеологический субъект традиционной теории познания, соответствующий периоду господства теоретико-множественного подхода в математике, - это абстрактный, неполный, «частичный» субъект, представленный в субъектно-объектных отношениях, оторванный абстракциями, логикой, формализмом от действительности, рационально, теоретически познающий свой объект и понимаемый как зеркало, точно отражающее и копирующее действительность. По сути, субъект исключался из познания как реального процесса и результата взаимодействия с объектом. Выход интуиционизма на арену борьбы философских направлений в математике привел к новому пониманию математика как субъекта познания - человека познающего, философская абстракция которого должна быть выстроена как бы заново. Математик предстал как эмпирический субъект, понимаемый уже как целостный реальный человек, включающий все те свойства, от которых отвлекались в гносеологическом субъекте, - эмпирическую конкретность, изменчивость, историчность; это действующий и познающий в реальном познании, творческий, интуитивный, изобретательный субъект. Философия интуиционистской математики стала базой, фундаментом современной эпистемологической парадигмы, построенной на концепции гибкой рациональности, в которой человек - это цельный (целостный) субъект познания, обладающий новыми познавательными качествами, методами, процедурами; он синтезирует свою как абстрактно-гносеологическую и логико-методологическую природу и форму, так и одновременно получает экзистенциально-антропологическое и «историко-метафизическое» осмысление.

Важным моментом так же является интуиция в познании и, в частности, в образовании математических понятий. Опять же идёт борьба с философией, попытки исключить закон исключённого третьего, как не имеющий смысла в математике и пришедший в неё из философии. Однако же наличие излишнего акцента на интуицию и отстутствие чётких математических обоснований не позволили перевести математику на твёрдый фундамент.

Однако после появления в 1930-х годах строгого понятия алгоритма эстафету от интуиционизма принял математический конструктивизм, представители которого внесли немалый вклад в современную теорию вычислимости. Кроме того, в 1970-е и 1980-е годы обнаружились существенные связи между некоторыми идеями интуиционистов (даже теми, которые раньше казались абсурдными) и математической теорией топосов. Математика, имеющаяся в некоторых топосах, весьма напоминает ту, которую пытались создать интуиционисты.

В качестве итога можно сделать утверждение: большинство из вышеуказанных парадоксов попросту не существуют в теории множеств с самопринадлежностью . Является ли подобный подход окончательным - спорный вопрос, дальнейшие работы в этой области покажут.

Заключение

Диалектико-материалистический анализ показывает, что парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

Закончен ли третий кризис математики (потому как он находился в причинно-следственной связи с парадоксами; теперь же парадоксы - неотъемлемая часть) - тут мнения расходятся, хотя формально известные парадоксы к 1907-му году были устранены. Впрочем, сейчас в математике имеются и другие обстоятельства, которые можно считать либо кризисными, либо предвещающими кризис (например), отсутствие строгого обснования у континуального интеграла).

Что же касается парадоксов, то весьма важную роль в математике сыграл известный парадокс лжеца, а так же целая серия парадоксов в так называемой наивной (предшествовавшей аксиоматической) теории множеств, вызвавших кризис оснований (один из таких парадоксов сыграл роковую роль в жизни Г. Фреге). Но, возможно, одним из самых недооценённых явлений в современной математике, которое вполне можно назвать и парадоксальным, и кризисным, является решение Полом Коэном в 1963 году первой проблемы Гильберта. Точнее, не сам факт решения, а характер этого решения .

Литература

  1. Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen, 46:481--512, 1895.
  2. И.Н. Бурова. Парадоксы теории множеств и диалектика. Наука, 1976.
  3. M.D. Potter. Set theory and its philosophy: a critical introduction. Oxford University Press, Incorporated, 2004.
  4. Жуков Н.И. Философские основания математики. Мн.: Университетское, 1990.
  5. Фейнман Р.Ф., С. Ильин. Вы, конечно, шутите, мистер Фейнман!: похождения удивительного человека, поведанные им Р. Лейтону. КоЛибри, 2008.
  6. О. М. Мижевич. Два способа преодоления парадоксов в теории множеств Г. Кантора. Логико-философские штудии, (3):279--299, 2005.
  7. С. И. Масалова. ФИЛОСОФИЯ ИНТУИЦИОНИСТСКОЙ МАТЕМАТИКИ. Вестник ДГТУ, (4), 2006.
  8. Чечулин В.Л. Теория множеств с самопринадлежностью (основания и некоторые приложения). Перм. гос. ун-т. – Пермь, 2012.
  9. С. Н. Тронин. Краткий конспект лекций по дисциплине ""Философия математики"". Казань, 2012.
  10. Гришин В.Н., Бочвар Д.А. Исследования по теории множеств и неклассическим логикам. Наука, 1976.
  11. Хофштадтер Д. Гедель, Эшер, Бах: эта бесконечная гирлянда. Бахрах-М, 2001.
  12. Кабаков Ф.А., Мендельсон Э. Введение в математическую логику. Издательство «Наука», 1976.
  13. Д.А. Бочвар. К вопросу о парадоксах математической логики и теории множеств. Математический сборник, 57(3):369--384, 1944.

Не помню, когда я впервые узнал про топологию, но меня эта наука сразу заинтересовала. Чайник превращается в бублик, сфера выворачивается наизнанку. Многие слышали про это. Но у тех, кто хочет углубиться в эту тему на более серьёзном уровне, часто возникают трудности. Особенно это относится к освоению самых начальных понятий, которые по своей сути очень абстрактны. Более того, многие источники, как будто специально стремятся запутать читателя. Скажем русская вики даёт весьма туманную формулировку того, чем занимается топология. Там говорится, что это наука изучающая топологические пространства . В статье про топологические пространства читатель может узнать, что топологические пространства - это пространства снабжённые топологией . Такие объяснения в стиле лемовских сепулек не очень проясняют суть предмета. Я попробую далее изложить основные базовые понятия в более ясной форме. В моей заметке не будет превращающихся чайников и бубликов, но будут сделаны первые шаги, которые позволят в конце концов научиться этой магии.

Впрочем, так как я не математик, а стопроцентный гуманитарий, то вполне возможно, что написанное ниже - враньё! Ну, или по крайней мере часть.

Впервые я написал эту заметку, как начало цикла статей о топологии, для своих гуманитарных друзей, но никто из них читать ее не стал. Исправленную и расширенную версию я решил выложить на хабр. Мне показалось, что здесь существует определенный интерес к этой теме и статей как раз такого рода еще не было. Заранее благодарен за все комментарии об ошибках и неточностях. Предупреждаю, что я использую много картинок.

Начнем с краткого повторения теории множеств. Думаю, большинство читателей хорошо с ней знакомы, но тем не менее напомню основы.

Итак, считается, что определения у множества нет и, что мы интуитивно понимаем, что это такое. Кантор говорил так: «Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M)». Конечно, это просто иносказательное описание, а не математическое определение.
Теория множеств известна (прошу простить за каламбур) множеством удивительных парадоксов. Например . С ней также связан кризис математики в начале XX-го века.

Теория множеств существует в нескольких вариантах, таких как ZFC или NBG и других. Вариантом теории являетсятеория типов , которая весьма важна для программистов. Наконец, некоторые математики предлагает вместо теории множеств в качестве фундамента математики использовать теорию категорий, о которой много написано на Хабре. Теория типов и теория множеств описывают математические объекты как бы «изнутри», а теория категорий не интересуется их внутренним строением, а только как они взаимодействуют, т.е. даёт их «внешнюю» характеристику.
Для нас важны только самые начальные основы теории множеств.

Множества бывают конечными.

Бывают бесконечными. Например, множество целых чисел, которое обозначается буквой ℤ (или просто Z, если у вас на клавиатуре нет фигурных букв).

Наконец, есть пустое множество. Оно ровно одно во всей Вселенной. Имеется простое доказательство этого факта, но я не буду его здесь приводить.

Если множество бесконечно, оно бывает счетным . Счетные - те множества, элементы которых можно перенумеровать натуральными числами. Само множество натуральных чисел, как вы догадались, тоже счетно. А вот как можно пронумеровать целые числа.

С рациональными числами сложнее, но и они поддаются нумерации. Этот способ называется диагональным процессом и выглядит, как на картинке внизу.

Мы зигзагом движемся по рациональным числам, начиная с 1. При этом каждому числу, которое у нас получается, присваиваем четный номер. Отрицательные рациональные числа считаются тем же способом, только номера нечетные, начиная с 3. Ноль традиционно получает первый номер. Таким образом видно, что все рациональные числа можно пронумеровать. Все числа вроде 4,87592692976340586068 или 1,00000000000001, или -9092, или даже 42 получают свой номер в этой таблице. Тем не менее, сюда попадают не все числа. Например, √2 не получит номера. Когда-то это очень огорчило греков. Говорят, того парня, который открыл иррациональные числа, утопили.

Обобщением понятия размера для множеств является мощность . Мощность конечных множеств равна числу их элементов. Мощность бесконечных множеств обозначается еврейской буквой алеф с индексом. Самая маленькая бесконечная мощность-это мощность 0 . Она равна мощности счетных множеств. Как видим, таким образом, натуральных чисел, так же много, как и целых или рациональных. Странно, но факт. Следующая - мощность континуума . Она обозначается 1 . Это мощность множества вещественных чисел ℝ, например. Существует гипотеза о том, что мощность континуума и мощность алеф-один - одно и то же. Т.е. что нет никакой промежуточной мощности меду счетными множествами и континуумом.

Над множествами можно проводить различные операции и получать новые множества.

1. Множества можно объединять.

3. Можно искать пересечение множеств.

Собственно это все о множествах, что нужно знать для целей этой заметки. Теперь мы можем приступить к самой топологии.
Топология - это наука, которая изучает множества с определенной структурой. Эта структура также называется топологией.
Пусть у нас есть некоторое непустое множество S.
Пусть же у этого множества будет некоторая структура, которая описывается с помощью множества, которое мы назовем Т. Т представляет собой множество подмножеств множества S такое, что:

1. Само S и ∅ принадлежат T.
2. Любое объединение произвольных семейств элементов T принадлежит T.
3. Пересечение произвольного конечного семейства элементов T принадлежит T.

Если эти три пункта выполняются, то наша структура является топологией T на множестве S. Элементы множества T называются открытыми множествами на S в топологии T. Дополнением к открытым множествам являются замкнутые множества. Важно отметить, что если множество открыто, это еще не означает, что оно не замкнуто и наоборот. Кроме того в данном множестве относительно некоторой топологии могут быть подмножества, которые не являются ни открытыми, ни замкнутыми.

Приведем пример. Пусть у нас есть множество, состоящее из трех цветных треугольников.

Самая простая топология на нем называется антидискретной топологией . Вот она.

Эту топологию, также называют топологией слипшихся точек . Она состоит из самого множества и из пустого множества. Это действительно удовлетворяет аксиомам топологии.

На одном множестве можно задать несколько топологий. Вот еще одна очень примитивная топология, которая бывает. Она называется дискретной. Это топология, которая состоит из всех подмножеств данного множества.

А вот еще топология. Она задана на множестве из 7 разноцветных звезд S, которые я обозначил буквами. Убедитесь, что это топология. Я в этом не уверен, вдруг я пропустил, какое-то объединение или пересечение. На этой картинке должно быть само множество S, пустое множество, пересечения и объединения всех остальных элементов топологии также должны быть на картинке.

Пара из топологии и множества на котором она задана называется топологическим пространством .

Если в множестве много точек (не говоря уже о том, что их может быть бесконечно много), то перечислить все открытые множества может быть проблематично. Например, для дискретной топологии на множестве из трех элементов, надо составить список из 8 множеств. А для 4-элементного множества дискретная топология будет насчитывать уже 16, для 5 - 32, для 6 -64 и так далее. Для того, чтобы не перечислять все открытые множества используется как бы сокращенная запись - выписываются те элементы, объединения которых могут дать, все открытые множества. Это называется базой топологии. Например, для дискретной топологии пространства из трех треугольников - это будут три треугольника взятые в отдельности, потому, что объединяя их, можно получить все остальные открытые множества в данной топологии. Говорят, что база генерирует топологию. Множества, элементы которого генерируют базу, называют предбазой.

Ниже пример базы для дискретной топологии на множестве из пяти звезд. Как видите, в данном случае база состоит всего из пяти элементов, в то время как в топологии целых 32 подмножества. Согласитесь, использовать базу для описания топологии - гораздо удобнее.

Для чего нужны открытые множества? В каком-то смысле они дают представление о «близости» между точками и о различии между ними. Если точки принадлежат двум разным открытым множествам или если одна точка находится в открытом множестве, в котором не находится вторая, то они топологически различаются. В антидискретной топологии все точки в этом смысле неразличимы, они как бы слиплись. Наоборот, в дискретной топологии все точки имеют различие.

С понятием открытого множества неразрывно связано понятие окрестности . Некоторые авторы дают определение топологии не через открытые множества, а через окрестности. Окрестность точки p - это множество, которое содержит открытый шар с центром в этой точке. Например, на рисунке ниже показаны окрестности и не окрестности точек. Множество S 1 является окрестностью точки p, а множество S 2 нет.

Связь между открытым множеством и октестностью можно сформулировать так. Открытое множество - такое множество, каждый элемент которого имеет некоторую окрестность. Или наоборот можно сказать, что множество открыто, если оно является окрестностью любой своей точки.

Все это самые базовые понятия топологии. Отсюда еще не ясно как выворачивать сферы наизнанку. Возможно в будущем, я смогу добраться и до такого рода тем (если сам разберусь).

New Page 1

Математический анализ для чайников. Урок 1. Множества.

Понятие множества

Множество - это совокупность некоторых объектов. Какие могут быть множества? Во первых, конечные или бесконечные. Например, множество спичек в коробке - это конечное множество, их можно взять и сосчитать. Количество песчинок на пляже сосчитать гораздо труднее, но, в принципе, возможно. И это количество выражается каким то конечным числом. Так что множество песчинок на пляже тоже конечно. А вот множество точек на прямо это множество бесконечное. Так как во первых, прямая сама по себе бесконечная и на ней можно поставить сколько угодно точек. Множество точек отрезка прямой тоже бесконечное. Потому что теоретически точка может быть сколь угодно маленькая. Конечно, мы физически не сможем нарисовать точку, размером, например, меньше размера атома, но, с точки зрения математики точка не имеет размера. Ее размер равен нулю. А что получается, если разделить на нуль какое то число? Правильно, бесконечность. И хотя множество точек на прямой и на отрезке стремится к бесконечности, это не одно и тоже. Множество - это не количество чего то там, а совокупность каких либо объектов. И равными считаются только те множества, которые содержат абсолютно одинаковые объекты. Если в одном множество содержит те же объекты, что и другое множество, но плюс еще один какой нибудь "левый" объект, то это уже не равные множества.

Рассмотрим пример. Пусть у нас имеется два множества. Первое - совокупность все точек на прямой. Второе - совокупность всех точек на отрезке прямой. Почему они не равны? Во первых, отрезок и прямая могут даже не пересекаться. Тогда они уж точно не равны, так как содержат в себе абсолютно разные точки. Если они пересекаются, то у них только одна общая точка. Все остальные так же разные. А если отрезок лежит на прямой? Тогда все точки отрезка являются и точками прямой. Но не все точки прямой являются точками отрезка. Так что и в этом случае множества нельзя считать равными (одинаковыми).

Каждое множество задается правилом, которое однозначно определяет, принадлежит элемент к этому множеству или нет. Какие могут быть эти правила? Например, если множество конечное, можно тупо перечислить все его объекты. Можно задать диапазон. Например, все целые числа от 1 до 10. Это будет тоже конечное множество, но тут мы не перечисляем его элементы, а формулируем правило. Или неравенство, к примеру, все числа, больше 10. Это будет уже бесконечное множество, поскольку нельзя назвать самое большое число - какие бы число мы не называли, всегда есть это число плюс 1.

Как правило, множества обозначаются прописными буквами латинского алфавита A, B, C и так далее. Если множество состоит из конкретных элементов и мы хотим задать его списком этих элементов, то мы можем заключить этот список в фигурные скобки, например A={a, b, c, d}. Если a является элемент множества A, то это записывают следующим образом: a Î A . Если же a не является элементом множества A, то пишут a Ï A. Одним из важных множеств является множество N всех натуральных чисел N={1,2,3,...,} . Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Æ .

Определение 1 (определение равенства множеств). Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из x Î A следует x Î B и обратно, из x Î B следует x Î A.

Формально равенство двух множеств записывается следующим образом:

(А=В ) := " x (( x Î A ) Û (x Î B )),

Это означает, что для любого объекта x соотношения x Î A и x Î B равносильны.

Здесь " – квантор всеобщности (" x читается как "для каждого x ").

Определение 2 (определение подмножества). Множество А является подмножеством множества В , если любое х принадлежащее множеству А , принадлежит множеству В. Формальное это можно представить в виде выражения:

(A Ì B ) := " x ((x Î A ) Þ (x Î B ))

Если A Ì B, но A ¹ B, то A – собственное подмножество множества В. В качестве примера можно привести опять же прямую и отрезок. Если отрезок лежит на прямой, то множество его точек являются подмножеством точек этой прямой. Или, другой пример. Множество целых чисел, которые делятся без остатка на 3, является подмножеством множества целых чисел.

Замечание. Пустое множество является подмножеством любого множества.

Операции над множествами

Над множествами возможны следующие операции:

Объединение. Суть этой операции состоит в том, что бы два множества объединить в одно, содержащее элементы каждого из объединяемых множеств. Формально это выглядит так:

C=A È B: = {x:x Î A или x Î B }

Пример. Решим неравенство | 2 x + 3 | > 7.

Из него следует либо неравенство 2x+3 >7, для 2x+3 ≥0, тогда x>2

либо неравенство 2x+3 <-7, для 2x+3 <0, тогда x<-5.

Множеством решений данного неравенство является объединения множеств (-∞,-5) È (2, ∞).

Давайте проверим. Посчитаем значение выражение | 2 x + 3 | для нескольких точек, лежащих и не лежащих в данном диапазоне:

x | 2 x + 3 |
-10 17
-6 9
-5 7
-4 5
-2 1
0 3
1 5
2 7
3 9
5 13

Как видим, все решено правильно (красным обозначены пограничные диапазоны).

Пересечение. Пересечением называется операция создания нового множества из двух, содержащих элементы, которые входят в оба этих множества. Что бы изобразить это наглядно, давайте представим, что у нас есть два множества точек на плоскости, а именно фигура A и фигура B. Их пересечение обозначает фигуру C - это и есть результа операции пересечения множеств:

Формально операция пересечения множеств записывается так:

C=A Ç B := {x: x Î A и x Î B }

Пример. Пусть у нас есть множество Тогда C=A Ç B = {5,6,7}

Вычитание. Вычитание множеств - это исключение из вычитаемого множества тех элементах, которые содержатся в вычитаемом и вычитателе:

Формально вычитание множества записывается так:

A \ B: = {x:x Î A и x Ï B }

Пример. Пусть у нас есть множество A={1,2,3,4,5,6,7}, B={5,6,7,8,9,10}. Тогда C=A \ B = { 1,2,3,4}

Дополнение. Дополнение - это унарная операция (операция не над двумя, а над одним множеством). Эта операция является результатом вычитания данного множества из полного универсального множества (множества, которое включает в себя все остальные множества).

A : = {x:x Î U и x Ï A} = U \ A

Графически это можно изобразить в виде:

Симметричная разность. В отличии от обычной разности при симметричной разности множеств элементы остаются только те, что присутствуют либо в одном, либо в другом множестве. Или, говоря простым языком, из двух множеств создается, но из него исключаются те элементы, которые есть и в том и в другом множестве:

Математически это можно выразить так:

A D B:= (A \ B ) È (B \ A ) = (A È B ) \ (A Ç B )

Свойства операций над множествами.

Из определений объединения и пересечения множеств следует, что операции пересечения и объединения обладают следующими свойствами:

  1. Коммутативность.

A È B=B È A
A
Ç B=B Ç A

  1. Ассоциативность.

(A È B ) È C=A È (B È C )
(A Ç B ) Ç C= A Ç (B Ç C )

    Михаил Раскин

    Современная математика в качестве своего основания использует теорию множеств. Традиционно при анализе теоретико-множественных тонкостей используется аксиоматика Цермело-Френкеля с аксиомой выбора, обозначаемая ZFC. На аксиому выбора опираются доказательства наличия базиса в любом векторном пространстве и существования неизмеримого множества в математическом анализе. К сожалению, теория множеств обязана работать и со множествами, которые не описываются достаточно подробно и конкретно, чтобы мы могли себе их представить. В курсе будет рассмотрен один пример, к чему это приводит. Оказывается, ценой ослабления аксиомы выбора можно получить теорию множеств, в которой любая ограниченная функция на отрезке интегрируема по Лебегу. То, что используется аксиома выбора, в каком-то смысле, произошло исторически. Курс основан на статье Р.М. Соловэя о построении теории множеств, в которой все множества вещественных чисел измеримы.

    Михаил Раскин

    В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома - это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.

    Иван Ященко

    При развитии теории множеств, на которой базируется вся современная математика, возникали парадоксы. Например, парадокс брадобрея, формулируемый следующим образом: «Бреет ли себя брадобрей, если он бреет тех и только тех, кто сам себя не бреет?» В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два. Приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

    Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

    Уверены ли вы, что точно представляете себе бесконечность? Харизматичный математик Джеймс запросто убедит вас в обратном.

    Александр Буфетов

    В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

    Юрий Лебедев

    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей - «Принципы семиотической термодинамики», «Отказ от исключения» - и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.

    Владимир Успенский

    Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка. Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность. На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка?

    Михаил Раскин

    Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.

    Джордана Цепелевич

    Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств - так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.

Определение 1. Множеством называется совокупность некоторых объектов, объединенных в одно целое по какому ‒ либо признаку.

Объекты, из которых состоит множество, называются его элементами.

Обозначаются заглавными буквами латинского алфавита: A , B , …, X , Y , …, а их элементы обозначаются соответствующими прописными буквами: a, b , …, x, y .

Определение 1.1. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом Ø.

Множество можно задать перечислением и описанием.

Пример:; .

Определение 1.2. Множеством A называется подмножеством B , если каждый элемент множества A является элементом множества B . Символически это обозначают так: AB (A содержится в B ).

Определение 1.3. Два множества A и B называются равными , если они состоят из одних и тех же элементов: (A =B ).

Операции над множествами.

Определение 1.4. Объединением или суммой множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из этих множеств.

Объединение множеств обозначают AB (или A +B ). Кратко можно записать AB = .

AB = A +B

Если BA , то A +B=A

Определение 1.5. Пересечением или произведением множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множеству B одновременно. Пересечение множеств обозначают AB (или A ·B ). Кратко можно записать:

AB =.

AB =A ·B

Если B A , то A · B= B

Определение 1.6. Разностью множеств A и B называется множество, каждый элемент которого является элементом множества A и не является элементом множества B . Разность множеств обозначают A \B . По определению A \B = .

A \B = A B

Множества, элементами которых являются числа, называются числовыми .

Примерами числовых множеств являются:

N = - множество натуральных чисел.

Z = - множество целых чисел.

Q = - множество рациональных чисел.

R ‒ множество действительных чисел.

Множество R содержит рациональные и иррациональные числа. Всякое рациональное число выражается или конечной десятичной дробью или бесконечной периодической дробью. Так, ;… ‒ рациональные числа.

Иррациональное число выражается бесконечной непериодической десятичной дробью. Так, = 1,41421356...; = 3,14159265.... – иррациональное число.

K – множество комплексных чисел (вида Z =a + bi )

R K

Определение 1.7. Ɛ ‒ окрестностью точки x 0 называется симметричный интервал (x 0 – Ɛ; x 0 + Ɛ), содержащий точку x 0 .

В частности, если интервал (x 0 –Ɛ; x 0 +Ɛ), то выполнятся неравенство x 0 –Ɛ<x <x 0 +Ɛ, или, что то же, │x x 0 │<Ɛ. Выполнение последнего означает попадание точки x в Ɛ – окрестность точки x 0 .

Пример 1:

(2 – 0,1; 2 + 0,1) или (1,9; 2,1) – Ɛ– окрестность.

x – 2│< 0,1

–0,1<x – 2<0,1

2 –0,1<x < 2 + 0,1

1,9<x < 2,1

Пример 2:

A – множество делителей 24;

B – множество делителей 18.