Мгновенное замерзание воды в космосе. Вода в космосе: на каких планетах она есть, и что пьют космонавты

Возможно, один из самых старых и распространенных мифов о космосе звучит так: в безвоздушном пространстве космоса любой человек взорвется без специального скафандра. Логика в том, что поскольку там нет никакого давления, мы бы раздулись и лопнули, как воздушный шарик, который надули слишком сильно. Возможно, вас удивит, но люди куда более прочные, чем воздушные шарики. Мы не лопаемся, когда нам делают укол, не лопнем и в космосе - наши тела не по зубам вакууму. Раздуемся немного, это факт. Но наши кости, кожа и другие органы достаточно устойчивы, чтобы пережить это, если кто-то не будет активно их разрывать. На самом деле, некоторые люди уже переживали условия чрезвычайно низкого давления, работая в ходе космических миссий. В 1966 году один человек тестировал скафандр и внезапно подвергся декомпрессии на 36 500 метров. Он потерял сознание, но не взорвался. Даже выжил и полностью восстановился.

Люди замерзают


Это заблуждение часто используется . Кто из вас не видел, как кто-то оказывается за бортом космического корабля без костюма? Он быстро замерзает, и если его не вернуть обратно, превращается в сосульку и уплывает прочь. В реальности происходит прямо противоположное. Вы не замерзнете, если попадете в космос, вы, наоборот, перегреетесь. Вода над источником тепла будет нагреваться, подниматься, остывать и опять по новой. Но в космосе нет ничего, что могло бы принять тепло воды, а значит остывание до температуры замерзания невозможно. Ваше тело будет работать, производя тепло. Правда, к тому времени, когда вам станет нестерпимо жарко, вы уже будете мертвы.

Кровь кипит


Этот миф не имеет ничего общего с тем, что ваше тело перегреется, если вы окажетесь в безвоздушном пространстве. Вместо этого он напрямую связан с тем, что любая жидкость имеет прямую связь с давлением окружающей среды. Чем выше давление, тем выше точка кипения, и наоборот. Потому что жидкости легче перейти в форму газа. Люди с логикой могут догадаться, что в космосе, где нет давления вообще, жидкость будет кипеть, а кровь - тоже жидкость. Линия Армстронга проходит там, где атмосферное давление настолько низкое, что жидкость будет кипеть при комнатной температуре. Проблема в том, что если жидкость будет кипеть в космосе, кровь - нет. Кипеть будут другие жидкости вроде слюны во рту. Тот человек, которого декомпрессировало на 36 500 метрах, говорил, что слюна «сварила» его язык. Кипение такое будет больше похоже на высушивание феном. Однако кровь, в отличие от слюны, находится в закрытой системе, и ваши вены будут удерживать ее под давлением в жидком состоянии. Даже если вы будете в полном вакууме, тот факт, что кровь замкнута в системе, означает, что она не превратится в газ и не улетучится восвояси.


Солнце - это то, с чего начинается изучение космоса. Это большой огненный шар, вокруг которого обращаются все планеты, который находится достаточно далеко, но греет нас и при этом не сжигает. Учитывая то, что мы не могли бы существовать без солнечного света и тепла, можно считать удивительным большое заблуждение о Солнце: что оно горит. Если вы когда-нибудь обжигали себя пламенем, поздравляем, на вас попало больше огня, чем могло дать вам Солнце. В реальности Солнце - это большой шар газа, который испускает свет и тепловую энергию в процессе ядерного синтеза, когда два атома водорода образуют атом гелия. Солнце дает свет и тепло, но обычного огня не дает вообще. Это просто большой и теплый свет.

Черные дыры - это воронки


Есть еще одно распространенное заблуждение, которое можно списать на изображение черных дыр в кино и мультфильмах. Разумеется, «невидимы» по своей сути, но для аудитории вроде нас с вами их рисуют похожими на зловещие водовороты судьбы. Их изображают двухмерными воронками с выходом только на одной стороне. В реальности черная дыра - это сфера. У нее нет одной стороны, которая засосет вас, скорее она похожа на планету с гигантской гравитацией. Если вы подойдете к ней слишком близко с любой стороны, вот тогда вас поглотит.

Повторный вход в атмосферу


Все мы видели, как космические корабли совершают повторный вход в атмосферу Земли (так называемый re-entering). Это серьезное испытание для судна; как правило, его поверхность сильно разогревается. Многие из нас думают, что это из-за трения между кораблем и атмосферой, и в этом объяснении есть смысл: как бы корабль был окружен ничем, и вдруг начинает тереться об атмосферу с гигантской скоростью. Разумеется, все будет раскаляться. Что ж, правда в том, что трению отводится менее процента тепла во время повторного входа. Основная причина нагрева - компрессия, или сжатие. Когда корабль несется обратно к Земле, воздух, через который он проходит, сжимается и окружает корабль. Это называется головной ударной волной. Воздух, который сталкивается с головой корабля, толкает его. Скорость происходящего приводит к тому, что воздух нагревается, не имея времени на декомпрессию или охлаждение. Хотя часть тепла абсорбируется тепловым щитом, красивые картинки повторного входа в атмосферу создает именно воздух вокруг аппарата.

Хвосты комет


Представьте на секунду комету. Скорее всего, вы представите кусок льда, несущийся сквозь космическое пространство с хвостом из света или огня позади. Возможно, для вас будет сюрпризом, что направление хвоста кометы не имеет ничего общего с направлением, в котором движется комета. Дело в том, что хвост кометы не является результатом трения или разрушения тела. Солнечный ветер нагревает комету и приводит к таянию льда, поэтому частицы льда и песка летят в противоположном ветру направлении. Поэтому хвост кометы не обязательно будет тянуться за ней шлейфом, однако всегда будет направлен в сторону от солнца.


После понижения Плутона по службе, Меркурий стал самой маленькой планетой. Также это ближайшая к Солнцу планета, поэтому вполне естественно было бы предположить, что это самая горячая планета нашей системы. Короче, Меркурий - чертовски холодная планета. Во-первых, в самой горячей точке Меркурия температура составляет 427 градусов по Цельсию. Даже если бы на всей планете сохранялась такая температура, все равно Меркурий был бы холоднее Венеры (460 градусов). Причина того, что Венера, которая почти на 50 миллионов километров дальше от Солнца, чем Меркурий, теплее, кроется в атмосфере из углекислого газа. Меркурий похвастать не может ничем.

Другая причина связана с его орбитой и вращением. Полный оборот вокруг Солнца Меркурий совершает за 88 земных дней, а полный оборот вокруг своей оси - на 58 земных дней. Ночь на планете длится 58 дней, что дает достаточно времени, чтобы температура упала до -173 градусов по Цельсию.

Зонды


Все знают, что марсоход «Кьюриосити» в данный момент занимается важной исследовательской работой на Марсе. Но люди забыли о многих других зондах, которые мы рассылали на протяжении многих лет. Марсоход «Оппортьюнити» приземлился на Марсе в 2003 году с целью провести миссию в течение 90 дней. Спустя 10 лет он все еще работает. Многие люди думают, что мы никогда не отправляли зонды на планеты кроме Марса. Да, мы отправили множество спутников на орбиту, но посадить что-то на другую планету? Между 1970 и 1984 годами СССР успешно посадил восемь зондов на поверхности Венеры. Правда, все они сгорели, благодаря недружелюбной атмосфере планеты. Самый стойкий венероход прожил около двух часов, гораздо дольше, чем ожидалось.

Если мы отправимся чуть дальше в космос, мы достигнем Юпитера. Для роверов Юпитер - это еще более сложная цель, чем Марс или Венера, поскольку состоит почти целиком из газа, на котором ездить нельзя. Но это не остановило ученых и они отправили туда зонд. В 1989 году космический аппарат «Галилео» отправился изучать Юпитер и его спутники, чем и прозанимался следующие 14 лет. Он также сбросил зонд на Юпитер, а тот отправил информацию о составе планеты. Хотя на пути к Юпитеру находится и другой корабль, та, самая первая информация, имеет неоценимое значение, поскольку на тот момент зонд «Галилео» был единственным зондом, погрузившимся в атмосферу Юпитера.

Состояние невесомости

Этот миф кажется настолько очевидным, что многие люди никак не хотят переубеждать себя. Спутники, космические аппараты, астронавты и другое не испытывают невесомости. Настоящая невесомость, или микрогравитация, не существует и никто ее не испытывал никогда. Большинство людей находятся под впечатлением: как же так, астронавты и корабли плавают, поскольку находятся далеко от Земли и не испытывают действие ее гравитационного притяжения. На самом деле именно гравитация позволяет им плавать. Во время облета Земли или любого другого небесного тела, обладающего значительной гравитацией, объект падает. Но поскольку Земля постоянно движется, эти объекты не врезаются в нее.

Гравитация Земли пытается затащить корабль на свою поверхность, но движение продолжается, поэтому объект продолжает падать. Это вечное падение и приводит к иллюзии невесомости. Астронавты внутри корабля тоже падают, но кажется, будто они плавают. Такое же состояние можно испытать в падающем лифте или самолете. И вы можете испытать в самолете, свободно падающем на высоте 9000 метров.

Вода - это жизнь. Этой мысли тысячи лет, а она до сих пор не утратила своей актуальности. С наступлением космической эры, значение воды лишь возросло, так как от воды в космосе зависит буквально все, начиная от работы самой космической станции и заканчивая выработкой кислорода. Первые космические полеты не имели замкнутой системы «водоснабжения». То есть, вся вода бралась на борт изначально, еще с Земли. Сегодня на МКС частично замкнутая система регенерации воды, и в этой статье вы узнаете подробности.

Откуда берется вода на МКС

Регенерация воды - это повторное получение воды. Отсюда нужно сделать самый главный вывод, что первоначально вода на МКС доставляется с Земли. Невозможно регенерировать воду, если изначально ее не доставить с Земли. Сам процесс регенерации снижает расходы на космические полеты, и делает систему МКС менее зависимой от наземных служб.

Вода, доставляемая с Земли используется на МКС многократно. Сейчас на МКС используется несколько способов регенерации воды:

  • Конденсация влаги из воздуха;
  • Очистка использованной воды;
  • Переработка урины и твердых отходов;

На МКС установлена специальная аппаратура, которая конденсирует влагу из воздуха. Влага в воздухе - это естественно, она есть и в космосе и на Земле. В процессе жизнедеятельности космонавты могут выделять до 2,5 литров жидкости в сутки. Кроме этого, на МКС есть специальные фильтры, для очистки использованной воды. Но учитывая то, как моются космонавты , бытовой расход воды значительно отличается от земного. Переработка урины и твердых отходов - это новая разработка, примененная на МКС лишь с 2010-ого года.

На данный момент, для функционирования МКС требуется около 9000 литров воды в год. Это общая цифра, отражающая все расходы. Вода на МКС регенерируется примерно на 93%, поэтому объемы поставок воды на МКС существенно ниже. Но не стоит забывать, что с каждым полным циклом использования воды, ее общий объем уменьшается на 7%, что делает МКС зависимой от поставок с Земли.

С 29 мая 2009-ого количество членов экипажа возросло вдвое - с 3 до 6 человек. Вместе с этим возрос и расход воды, но современные технологии позволили увеличить численность космонавтов на МКС.

Регенерация воды в космосе

Когда речь заходит про космос, важно учитывать энергозатраты, или как их называют в профессиональной сфере - массозатраты, для производства воды. Первый полноценный аппарат регенерации воды появился на станции «Мир», и за все время существования он позволил «сэкономить» 58650 кг доставляемых грузов с Земли. Вспоминая, что доставка 1 кг груза стоит около 5-6 тысяч долларов США, первая полноценная система регенерации воды позволила снизить расходы примерно на 300 млн долларов США.

Современные российские системы регенерации воды - СРВ-К2М и Электрон-ВМ позволяют обеспечить космонавтов на МКС водой на 63%. Биохимический анализ показал, что регенерированная вода не утрачивает своих исходных свойств, и полностью пригодна для питья. В настоящий момент, российские ученые работают над созданием более замкнутой системы, что позволит обеспечить космонавтов водой на 95%. Существуют перспективы развития систем очистки, которые обеспечат на 100% замкнутый цикл.

Американская система регенерации воды - ECLSS, была разработана в 2008-ом году. Она позволяет не только собрать влагу из воздуха, но и регенерировать воду из мочи и твердых отходов. Несмотря на серьезные проблемы и частые поломки на протяжении первых двух лет эксплуатации, сегодня ECLSS позволяет восстановить 100% влаги из воздуха и 85% влаги из мочи и твердых отходов. В результате, на МКС появился современный аппарат, позволяющий восстановить до 93% первоначального объема воды.

Очистка воды

Ключевым моментом в регенерации является очистка воды. В очистительные системы собирается любая вода - оставшаяся от приготовления пищи, грязная вода от мытья и даже пот космонавтов. Все эта вода собирается в специальный дистиллятор, визуально похожий на бочку. При очистке воды необходимо создать искусственную гравитацию, для этого дистиллятор вращается, при этом грязная вода прогоняется через фильтры. В результате получается чистая питьевая вода, которая по своим качествам даже превосходит питьевую воду во многих уголках Земли.

На последнем этапе в воду добавляется йод. Этот химический препарат позволяет предотвратить размножение микробов и бактерий, а также является необходимым элементом для здоровья космонавтов. Любопытный факт, что на Земле йодированная вода считается слишком дорогим удовольствием для массового применения, и вместо йода используется хлор. От использования хлора на МКС отказались по причине агрессивности данного элемента, и большей пользы от йода.

Потребление воды в космосе

Для обеспечения жизнедеятельности космонавтов требуется колоссальное количество воды. Если бы к нашим дням не наладили систему регенерации воды, то космические исследования, наверняка, застряли бы в прошлом. Учитывая расход воды в космосе используются следующие данные в расчёте на 1 человека в сутки:

  • 2,2 литра - питье и приготовление пищи;
  • 0,2 литра - гигиена;
  • 0,3 литра - смыв туалета;

Потребление воды для питья и пищи практически соотсветвует земным нормам. Гигиена и туалет - намного меньше, хотя все это поддается переработке и повторному использованию, но это требует энергетических затрат, так что расходы были также снижены. Любопытный факт, что если на российского космонавта в день приходится 2,7 литра воды, то на американских астронавтов выделено примерно 3,6 литра. Американская миссия продолжает получать воду с Земли, впрочем как и российские космонавты. Но в отличие от российской миссии, американцы получают воду в небольших пластиковых пакетах, а наши космонавты в 22 литровых бочонках.

Использование переработанной воды

Обыватель может предположить, что космонавты на МКС пьют воду, переработанную из собственной урины и твердых отходов. На деле же это не так, для питья и приготовления пищи космонавты используют чистую родниковую воду, доставленную с Земли. Вода дополнительно проходит серебряные фильтры, и доставляется на МКС российским грузовым космическим кораблем «Прогресс».

Питьевая вода поставляется в 22 литровых бочках. Воду, полученную путем переработки урины и твёрдых отходов используют для технических нужд. Например, вода необходима для работы катализаторов и для работы системы выработки кислорода. Условно говоря, космонавты «дышат уриной», а не пьют ее.

В начале 2010-ого года в СМИ появилась информация, что из-за поломки в системе регенерации воды на МКС, у американских астронавтов заканчивается питьевая вода. Владимир Соловьев, руководитель полета российского сегмента МКС, рассказал журналистам, что экипаж МКС никогда не пил воду, получаемую путем регенерации из урины. Поэтому поломка американской системы переработки урины, которая действительно была на тот момент, не повлияла на количество питьевой воды. Примечательно, что американская система дважды выходила из строя по одной и той же причине, и лишь на второй раз удалось установить истинную причину проблемы. Оказалось, что из-за влияния космических условий, в моче астронавтов сильно повышается кальций. Фильтры для переработки урины, разработанные на Земле, не были рассчитаны на такой биохимический состав мочи, и поэтому быстро приходили в негодность.

Производство кислорода из воды

Советские, а затем и российские ученые, задают темп в вопросе производства кислорода из воды. И если в вопросе регенерации воды американские коллеги немного перегнали российских ученых, то в вопросе выработки кислорода, наши уверено держат пальму первенства. Даже сегодня, 20-30% переработанной воды из американского сектора МКС идет в российские аппараты по производству кислорода. Регенерация воды в космосе тесно связана с регенерацией кислорода.

Первые аппараты по производству кислорода из воды были установлены еще на аппаратах «Салют» и «Мир». Процесс производства максимально прост - специальные приборы конденсируют влагу из воздуха, а затем путем электролиза из этой воды производят кислород. Электролиз - пропускание тока через воду, является хорошо отработанной схемой, которая надежно обеспечивает космонавтов кислородом.

Сегодня к конденсируемой влаге добавился еще один источник воды - переработанная урина и твердые отходы, позволяющие получить техническую воду. Техническая вода из американский аппарата ECLSS поставляется в российскую систему и американскую OGS (Oxygen Generation System), где затем «перерабатывается» в кислород.

Ученые бьются над решением задачи - 100% замкнутый цикл для полного обеспечения космонавтов водой и кислородом. Одна из самых перспективных разработок - получение воды из углекислого газа. Этот газ является продуктом дыхания человека, и в настоящее время этот «продукт» жизнедеятельности космонавтов практически не используется.

Французский химик - Поль Саботье, открыл удивительный эффект, благодаря которому из реакции водорода и диоксида углерода можно получить воду и метан. Нынешний процесс производства кислорода на МКС связан с выделением водорода, но его просто выбрасывают в открытый космос, так как не находят ему применения. Если ученым удастся наладить эффективную систему по переработке углекислого газа, то удастся достичь практически 100% замкнутости системы, и найти эффективное применение водороду.

Реакция Боша, является не менее перспективной в вопросах получения воды и кислорода, но эта реакция требует крайне высоких температур, поэтому за процессом Саботье многие эксперты видят больше перспектив.

Если представить себя космонавтом, держащего в невесомости закрытую баночку с водой, то однозначно возникнет вопрос: как вода выглядит в банке? Ответ может быть не так уж и очевиден. Либо это одиночный шарик, находящийся на дне банки, либо множество шариков, цепляющихся за ее стенки? На протяжении десятилетий никто так и не смог ответить однозначно на этот вопрос, но после последнего запуска грузового корабля Dragon, ученые все же намереваются решить эту тайну раз и навсегда.

Правильный ответ не очень понятный. Нужно решить ряд термодинамических уравнений, позволяющих теоретически сказать, какое расположение является наиболее стабильным. Но без экспериментов все равно не обойтись. Именно с этой целью на борту Dragon, состыковавшегося с МКС в среду, 20 июля, находится оборудование, позволяющее провести сам эксперимент, а также зафиксировать на фото и видео его результаты.

Возможно, кому-то это покажется несущественной проблемой, но определение поведение воды в невесомости имеет огромное значение для проектирования систем жизнеобеспечения космонавтов. В июле 2013 года, забитый фильтр скафандра стал причиной утечки около 1,5 литра воды, которая покрыла лицо и шлем итальянского астронавта Лука Пармитано в ходе выхода в открытый космос. Жидкость стала мешать видеть, слышать команды и дышать, что вынудило экипаж прервать работу и быстро вернуться на станцию.

Ученые пыталась решить вопрос о поведении воды в невесомости почти 20 лет. Их термодинамические вычисления прогнозировали, что в коротких цилиндрических емкостях, она будет придерживаться боковых стенок. В более длинных емкостях будет распределяться в обоих концах емкости, оставляя промежуток в центре.

Однако у многих такое утверждение не вызывает доверия. Скептики говорят, что конфигурация не может быть устойчивой в невесомости. Чтобы развеять сомнения, в 1997 году был проведен эксперимент с водой в космосе. Были изготовлены несколько стеклянных баночек различных размеров, которые наполовину наполнили очищенной водой и перед их герметизацией выкачали из них воздух. Эксперимент проводили на борту шаттла «Колумбия», но, к сожалению, он завершился безрезультатно. Видео, снятое с помощью 8мм VHS-камеры, оказалось некачественным, что позволило сомневающимся остаться при своем мнении.

Новая возможность появилась в 2013 году. В рамках проекта НАСА, целью которого является обсуждение интересных вопросов о космосе, планируется выполнять видеосъемку на МКС различных событий и явлений. Среди таковых и поведение воды в условиях невесомости. Ученые подготовили новую, усовершенствованную по сравнению с 1997 годом, аппаратуру для эксперимента, который хотят снять модифицированной камерой GoPro с разрешением и видео в 4К. В случае успешности опыта, теория будет доказана или опровергнута раз и навсегда.

Результаты эксперимента могут иметь полезное применение на Земле. В наши дни растет интерес к нанофлюидики, науке, которая рассказывает о поведении жидкостей в каналах, в 10000 раз тоньше, чем человеческий волос. В таких масштабах, влияние гравитации минимально, поэтому жидкости ведут себя аналогично тому, что мы видим в космосе. Эксперимент с водой на МКС может значительно расширить знания о том, как с помощью нанофлюидики эффективнее добывать нефть.

Ученым удалось выяснить, что содержание воды в нашей Галактике гораздо выше, чем считалось ранее.

Новые измерения показали, что вода занимает третье место среди самых распространенных молекул во вселенной, что в свою очередь дало возможность астрономам произвести расчет содержания элементов в ранее недосягаемых и областях образования новых планетарных систем.

В холодных частях нашей Галактики содержание воды в космосе, было впервые измерено при помощи Инфракрасной Космической Обсерватории, испанскими и итальянскими астрономами. Особо примечателен тот факт, что именно в этих областях образуются звезды по типу схожие с Солнцем, а некоторые из них образуют настоящие системы с несколькими планетами. Средняя температура этих областей лишь на десять градусов выше абсолютного нуля (263 градуса по Цельсию). Такие области называют холодными облаками, потому как в них не массивных звезд, а стало быть, и нет мощного источника тепла. В галактике насчитывается более миллиона подобных облаков.

Также ученым удалось определить, какое количество воды находится в виде газа, а какое в виде льда. Эта информация крайне важна для изучения процесса формирования планетарных систем, потому как лёд и пары воды встречаются в газовых планетах, в атмосферах планет и

В температурных условиях холодных облаков, пары воды обнаружить крайне трудно, т.к. они практически не испускают излучения и не могут быть обнаружены нынешним поколением телескопов. Вдобавок к этому вода в космосе не может существовать в жидкой форме из-за низкой температуры и высокого давления. Поэтому до сих пор в космосе можно было обнаружить только лед. Однако астрономам известно, что пары воды также имеются и в холодных облаках, хоть и в сравнительно небольшом количестве. Для того чтобы грамотно оценить содержание воды в таких местах, необходимо измерить и содержание воды в виде пара.

Для измерения количества паров воды в холодных облаках, ученые решили применить следующую стратегию. Если брать во внимание тот факт, что свет, проходящий через пары воды должен оставить своеобразный «отпечаток» на всем световом потоке, а точнее спектры излучения приносят с собой полосы поглощения. Именно так ученым и удалось обнаружить пары в воды в этих облаках, а заодно и точное содержание воды.

Как оказалось, в холодных облаках воды практически столько же, сколько и в местах активного образования звезд. Самым главным из всей этой информации является то, что после окиси углерода и молекулярного водорода, вода является самой распространенной молекулой. К примеру содержание воды в одном из холодных облаков, массой в тысячу Солнц, количество воды в виде пара и льда соответствует тысяче масс юпитера.

Также ученые определили, что вода в космосе существует преимущественно в виде льда (99 процентов) осевшем в виде конденсата на холодных пылинках, оставшийся процент приходится на газ. Благодаря этим результатам можно окончательно выяснить роль воды в образовании планет.

С давних времен человечество интересовал вопрос о существовании других цивилизаций в космосе. Постепенно база знаний пополнялась новыми открытиями, ученые различных стран открывали и открывают новые космические объекты, где, по их мнению, могла бы быть жизнь. Есть даже формула, позволяющая подсчитать количество высокоразвитых цивилизаций. Ее разработал астроном Ф. Дрейк. По его мнению, существует более десяти тысяч развитых цивилизаций.

По мнению другого астронома, Карла Сагана, в галактике насчитывается более миллиона цивилизаций. И во всех этих мирах есть вода. В космосе ее много, она «путешествует» между мирами, переносясь астероидами и другими космическими телами. Но даже такие «плавающие» по космическому пространству и переносчики «жизни» не могут сравниться с нашей Землей. Именно наша планета, по мнению скептиков, является уникальной и не имеет аналогов во всей Вселенной.

Путешествие воды

Астрономы доказали, что вода в космосе разносится кометами. Есть даже мнения, утверждающие, что вода на Земле зародилась именно благодаря кометам. Учеными неоднократно был проведен анализ звездной системы Гидры, расположенной на расстоянии 176 световых лет. Вокруг звезды располагается протопланетный диск радиусом около 200 астрономических единиц (1 единица равна расстоянию от Солнца до Земли). Возраст этого объекта составляет около 10 млн лет. При анализе диска специалисты обнаружили в нем следы воды в том месте, где образуются кометы. По их мнению, жидкость находится в состоянии льда, который покрывает космическую пыль.

Вода у черной дыры

На расстоянии 12 млрд световых лет от нас располагается Квазар. Это уникальный мощный источник энергии во Вселенной: он излучает в 65 тыс. раз больше энергии, чем весь Млечный Путь. Светимость возникает из-за поглощения черной дырой различных объектов. Масса этой дыры в 20 млрд раз больше, чем масса Солнца.

Расстояние до Квазара очень велико, из-за чего астрономы могут наблюдать объект таким, каким он был на ранних стадиях эволюции, когда возраст Вселенной составлял около 2 миллиардов лет. По мнению ученых, вода в космосе могла существовать даже в то время, хотя обнаружить ее пока не удавалось. И только двум независимым группам ученых удалось установить, что вокруг Квазара располагается огромная водная оболочка в виде пара. Это открытие доказывает, что даже в такие давние времена вода уже была в космосе и что она распространена повсюду.

Солнечная система и вода

Считается, что вода в космосе - это основа жизни. Было время, когда ученые предполагали, что эта живительная влага содержится только на Земле, а на других планетах Солнечной системы ее нет. Однако исследования показали, что вода есть и на других планетах. Не так давно космическим зондом была обнаружена С этой планетой связано существование жизни, также Марс является вероятным объектом, куда предстоит первое пилотирование при полете на другую планету.

После многочисленных анализов удалось выяснить, что вода в космосе встречается и на других планетах. Ее много на Уране, Нептуне, хоть и в виде льда. Помимо планет Солнечной системы, воду нашли на их спутниках. На многочисленных спутниках Сатурна и Юпитера на Луне находится вода. Несмотря на большие космические запасы влаги, ученые все еще не могут понять, куда подевалась вода с Венеры, хотя есть мнение, что ее просто еще не нашли.

«Жидкая» Вселенная

Оказывается, космос - под водой, так как в нем находится это вещество в самых разных состояниях - где-то в виде жидкости, льда, а где-то в виде пара. Через телескопы ученым удается оценить самые разные планеты и их составляющие. Так, среди горячих юпитеров была обнаружена планета, на которой находятся огромные запасы воды в газообразном состоянии.

Это открытие доказывает, что воды во Вселенной больше, чем считалось. Она присутствует везде, в том числе и в межзвездных облаках. Предполагают, что даже возле нашего Солнца есть планеты земного типа со скалистой поверхностью, на которой плещутся океаны.

Случайное открытие

Совсем неожиданно ученые сделали открытие, найдя воду на расстоянии 64 световых лет от нас. Вода на ней располагается в газообразном состоянии. Проходя по орбите, планета была подсвечена своим светилом так, что жидкость дала о себе знать. На снимках она выглядит как черная вода. Космос содержит немало таких объектов. Все они изучаются учеными.

Что пьют космонавты

В космосе вода необходима так же, как на Земле. Это важнейший источник жизни для астронавта. Ее частично доставляют на орбиту грузовыми кораблями, а частично космонавты используют переработанную, очищенную воду.

Источниками воспроизводства воды являются конденсаты, отходы топливных элементов, моча астронавтов. После очистки, проводимой в космосе, в воде для космонавтов не остается вредных веществ и различных примесей. В результате очистки жидкость становится такой же, как бутилированная на Земле.

Сколько нужно воды человеку в космосе? Для каждого космонавта рассчитано определенное ее количество для питья в течение суток. С учетом чего жидкость поставляется на борт станции. Так, в день на одного астронавта приходится 2,2 литра воды. У американцев этот показатель выше - 3,6 л.

Добывать такие объемы из космоса человечество пока еще не умеет, но может перерабатывать «грязную» воду специальными устройствами. Получаемая вода используется не только для питья, но и для гигиены, нормального функционирования различных систем на станции и не только. Чтобы воды хватало, разработаны методики ее экономии, рационального использования. К примеру, космонавты не стирают, не принимают привычный на Земле душ. В космосе эти процедуры выполняются иначе.