Коэффициенты ван дер ваальса для азота. Реальные газы

Как мы уже упоминали, при низких температурах и высоких давлениях уравнение состояния идеального газа Менделеева – Клапейрона непригодно.

Учитывая собственный объём молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван – дер – Ваальс (1837 – 1923 г.г.) вывел уравнение " реального газа ", используя две поправки для уравнения Менделеева – Клапейрона.

Учёт собственного объёма молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объём других молекул, приводит к тому, что фактический свободный объём, в котором могут двигаться молекулы реального газа, будет равен не V μ (как в уравнении Менделеева – Клапейрона для одного моля газа), а V = (V μ -b) , где b – поправка на собственный объём молекул.

Можно показать, что поправка b равна учетверённому объёму молекул. Действительно, если, например, сближаются две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы (оболочки молекул считаются непроницаемыми). Это означает, что для центров обеих молекул оказывается недоступным сферический объём радиуса d, т.е. объём, равный восьми объёмам молекулы или учетверённому объёму молекулы в расчёте на одну молекулу.

Учёт притяжения молекул. Поскольку при определённых расстояниях между молекулами действуют силы притяжения (а они, как мы уже говорили, проявляются раньше сил отталкивания), то их действие приводит к появлению " дополнительного " действия на молекулы " идеального " газа. Это давление Ван – дер – Ваальс назвал " внутренним " давлением. По модели "реального" газа вычисления показали, что " внутреннее " давление молекул обратно пропорционально квадрату молярного объёма, т.е.:

, (17.6)

где а – вторая постоянная (поправка) Ван – дер – Ваальса, характеризующая действие сил межмолекулярного притяжения, V μ – молярный объём газа.

Вводя эти поправки, получим итоговое уравнение Ван – дер – Ваальса для одного моля газа :

. (17.7)

Для произвольного количества вещества в ν молей газа (т.к. ν = m/M μ ) с учётом того, что V = ν V μ , уравнение Ван – дер – Ваальса примет вид:

, (17.8)

где поправки a и b – постоянные для каждого индивидуального газа величины, вычисляемые из экспериментальных данных (в простейшем случае записываются уравнения Ван – дер – Ваальса для двух известных из опыта состояний газа и решаются относительно величин a и b ).

Поскольку при выводе уравнения для " реального " газа Ван – дер – Ваальсом был сделан ряд весьма существенных упрощений, поэтому оно так же, как и уравнение Менделеева – Клапейрона является достаточно приближённым уравнением, которое, однако, лучше (особенно для не очень сильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.



Для более точного описания опытных данных для реальных газов пользуются эмпирическими уравнениями состояния, чаще всего уравнением Камерлинг – Оннеса, имеющим вид:

, (17.9)

которое построено с таким расчётом, чтобы всегда имелась возможность привести это уравнение к согласию с данными опыта простым вписыванием дополнительных членов без изменения формы уравнения. Коэффициенты B,C, F называются вириальными коэффициентами и представляются в виде многочленов, расположенных по возрастающим степеням Т -1 :

, (17.10)

и аналогично для коэффициентов C,D,E,F .

При высоких температурах последний член в (5) можно опустить, и тогда изотерма будет гиперболой, асимптотами которой являются изобара Р = 0 и изохора V = b .

Для исследования изотерм при любых значениях Т умножим уравнение (4) на V 2 . После раскрытия скобок уравнение изотермы примет вид (6)

Это уравнение третьей степени по V , в которое давление Р входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости (V,P ) соответствует точка, в которой изобара Р = const пересекает изотерму. В первом случае, когда корень один и точка пересечения будет одна. Так будет, как мы видели, при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой MN .

При более низких температурах и надлежащих значениях давления Р уравнение (6) имеет три корня V 1 , V 2 , V 3 . В таких случаях изобара P = const пересекает изотерму в трех точках L, C, G (рис. 1). Изотерма содержит волнообразный участок LBCAG. Она сначала монотонно опускается вниз (участок DB ), затем на участке BA монотонно поднимается вверх, а за точкой A снова монотонно опускается. При некоторой промежуточной температуре три корня V 1 , V 2 , V 3 становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма FKH всюду монотонно опускается вниз, за исключением одной точки K, являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка K называется критической точкой. Соответствующие ей давление P k , объем V k и температура T k называются также критическими. Говорят, что вещество находится в критическом состоянии , если его объем и давление (а следовательно, и температура) равны критическим.

Для нахождения критических параметров P k , V k , T k учтем, что в критической точке уравнение (6) переходит в уравнение (7).

Поскольку в этом случае все три корня совпадают и равны V k , уравнение должно приводиться к виду (8).

Возводя в куб и сравнивая коэффициенты уравнений (7) и (8), получим три уравнения .

Решая их, найдем выражения для параметров критического состояния вещества: (9).

К тем же результатам можно прийти, заметив, что критическая точка К является точкой перегиба изотермы, касательная в которой горизонтальна, а поэтому в точке К должны соблюдаться соотношения .



Решая эти уравнения совместно с уравнением изотермы (4) придем к формулам (9).

Не все состояния вещества, совместимые с уравнением Ван-дер-Ваальса, могут быть реализованы в действительности. Для этого необходимо еще, чтобы они были термодинамически устойчивы. Одно из необходимых условий термодинамической устойчивости физически однородного вещества состоит в выполнении неравенства . Физически оно означает, что при изотермическом увеличении давления объем тела должен уменьшаться. Иными словами, при возрастании V все изотермы должны монотонно опускаться. Между тем, ниже критической температуры на изотермах Ван-дер-Ваальса имеются поднимающиеся участки типа BCA (рис. 1). Точки, лежащие на таких участках, соответствуют неустойчивым состояниям вещества, которые практически реализованы быть не могут. При переходе к практическим изотермам эти участки должны быть выброшены.

Таким образом, реальная изотерма распадается на две ветви EGA и BLD , отделенные друг от друга. Естественно предположить, что этим двум ветвям соответствуют различные агрегатные состояния вещества. Ветвь EA характеризуется относительно большими значениями объема или малыми значениями плотности, она соответствует газообразному состоянию вещества. Напротив, ветвь BD характеризуется относительно малыми объемами, а следовательно, большими плотностями, она соответствует жидкому состоянию вещества . Мы распространяем, следовательно, уравнение Ван-дер-Ваальса и на область жидкого состояния. Таким путем удается получить удовлетворительное качественное описание явления перехода газа в жидкость и обратно.

Возьмем достаточно разреженный газ при температуре ниже критической. Исходное состояние его на диаграмме PV изображается точкой E (рис. 1). Будем сжимать газ квазистатически, поддерживая температуру T постоянной. Тогда точка, изображающая состояние газа, будет перемещаться по изотерме вверх. Можно было думать, что она достигает крайнего положения A , где изотерма обрывается. В действительности, однако, начиная с некоторой точки G , давление в системе перестает повышаться, и она распадается на две физически однородные части, или фазы : газообразную и жидкую.

Процесс изотермического сжатия такой двухфазной системы изображается участком GL горизонтальной прямой. При этом во время сжатия плотности жидкости и газа остаются неизменными и равными их значениям в точках L и G соответственно. По мере сжатия количество вещества в газообразной фазе непрерывно уменьшается, а в жидкой фазе - увеличивается, пока не будет достигнута точка L, в которой все вещество перейдет в жидкое состояние.

Эндрюс систематически исследовал ход изотерм углекислоты (СО 2) при различных температурах и на основе этих исследований ввел понятие критической температуры. Углекислота им была выбрана сознательно, так как она обладает критической температурой (31 0 С), лишь незначительно превышающей комнатную, и сравнительно невысоким критическим давлением (72,9 атм). Оказалось, что при температуре выше 31 0 С изотермы углекислоты монотонно опускаются вниз, т.е. имеют гиперболический вид. Ниже этой температуры на изотермах углекислоты появляются горизонтальные участки, на которых изотермическое сжатие газа приводит к его конденсации, но не к увеличению давления. Таким путем было установлено, что сжатием газ можно превратить в жидкость только тогда, когда его температура ниже критической.

При специальных условиях могут быть реализованы состояния, изображаемые участками изотермы GA и BL. Эти состояния называются метастабильными. Участок GA изображает так называемый пересыщенный пар , участок BL - перегретую жидкость . Обе фазы обладают ограниченной устойчивостью. Каждая из них может существовать до тех пор, пока она не граничит с другой более устойчивой фазой. Например, пересыщенный пар переходит в насыщенный, если в него ввести капли жидкости. Перегретая жидкость закипает, если в нее попадают пузырьки воздуха или пара.

Уравнение Ван–дер–Ваальса:

где постоянные поправки а и b зависят от природы газа.


Поправка b учитывает объем, недоступный для движения молекул в силу конечности объема самих молекул и наличия взаимодействия между ними. Величина b составляет примерно учетверенный объем самих молекул.

Поправка а учитывает силы взаимного притяжения. Полагая, что внутреннее давление газа изменяется пропорционально квадрату плотности или обратно пропорционально квадрату удельного объема газа, Ван-дер-Ваальс принял его равным а/J 2 , где а – коэффициент пропорциональности.


Раскрывая скобки в левой части:

Умножая равенство на J 2 и разделив на р :


Полученное уравнение имеет три корня, т.е. при заданных параметрах р и Т имеется три значения переменной J, которые превращают уравнение в тождество.

Рассмотрим в системе координат р–J изотермы, построенные по уравнению Ван-дер-Ваальса.


Первый случай имеет место при высоких температурах, когда изотермы имеют вид кривых гиперболического характера (линия 1-2). Каждому давлению соответствует определенный удельный объем (давлению р а соответствует удельный объем J а). Тело в этом случае при любых давлениях находится в газообразном состоянии.


Второй случай имеет место при сравнительно низких температурах, когда изотермы имеют два перегиба (линия 3-4).

В этом случае между точками e и f находится область, в которой каждому давлению соответствует три значения удельного объема (давлению р а соответствуют удельные объемы J b , J с и J d), которые и являются тремя действительными и различными корнями уравнения Ван-дер-Ваальса.


Участок 3-b соответствует изотермическому сжатию тела, находящегося в газообразном состоянии, причем в точке b оно уже начинает переходить в жидкое состояние.

Точка d соответствует такому состоянию тела, когда оно уже полностью превратилось в жидкость, в соответствии с чем участок d-4 представляет собой изотермическое сжатие жидкости.


Точка с соответствует промежуточному двухфазному состоянию тела. Участок кривой b-f соответствует неустойчивому состоянию пара, а участок d-e – неустойчивому состоянию жидкости.

Что касается участка e-f, то он вообще физического смысла не имеет, поскольку в действительности при изотермическом сжатии тело переходит из газообразного в жидкое состояния при постоянном давлении, т.е. по горизонтальной линии b-d.


Третий случай имеет место при определенной для каждого тела температуре, когда точки b и d, сближаясь с повышением температуры, сливаются в одну точку k, в которой имеет место перегиб соответствующей изотермы, причем касательная к ней в этой точке имеет горизонтальное направление.


Точка k называется критической точкой, выше которой невозможно путем изотермического сжатия добиться перехода газа в жидкое состояние, а соответствующие ей параметры р кр, J кр и Т кр называются критическими параметрами.


Аналитически условия критического состояния тела выражаются уравнениями

Первое из них показывает, что критическая изотерма в точке k имеет горизонтальную касательную, второе – что изотерма имеет в точке k перегиб.

Используя эти уравнения совместно с уравнением состояния, можно определить значения критических параметров состояния газа.


Критические параметры определяются следующим образом .

Преобразуем уравнение Ван-дер-Ваальса:

Дифференцируем:


Определяем вторую производную:

Разделив первое уравнение на второе

и, следовательно ,

откуда


Уравнение Ван-дер-Ваальса можно представить в безразмерном виде с подстановкой.

ОПРЕДЕЛЕНИЕ

Связывает между собой основные термодинамические параметры для реального газа.

При низких давлениях и высоких температурах закон Менделеева-Клапейрона также довольно точно описывает поведение реальных газов, однако в других условиях реальные газы значительно отклоняются от идеальности. Уравнение Ван-дер-Ваальса учитывает эти отклонения.

Формула уравнения Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса имеет вид:

В этом уравнении n – количество молей газа, р – его , V – занимаемый газом объем, Т – абсолютна температура газа. Универсальная газовая постоянная имеет значение 8,31441 Дж/(моль К), одинаковое для всех газов.

Переменная а – это поправка на силу притяжения между молекулами газа. Под действием этой силы молекулы притягиваются друг к другу, внутрь газа, уменьшая давление на стенку. Переменная b – поправка, учитывающая собственный объем, занимаемый молекулами газа. Эти поправки зависят от вида газа, и могут быть найдены из таблиц либо рассчитаны по следующим формулам:

Здесь и – это давление и абсолютная температура газа в критической точке, то есть в точке перехода газообразной фазы в жидкую.

В реальном газе расстояния между молекулами меньше, чем в идеальном, и сравнимы с размерами самих молекул. Поэтому силы взаимодействия между молекулами становятся достаточно большими. В объеме газа молекула со всех сторон окружена другими молекулами, и силы их притяжения уравновешиваются. Однако когда молекула приближается к стенке, больше не уравновешиваются и «втягивают» её внутрь. Поэтому молекула движется к стенке медленнее, из-за чего давление на стенку уменьшается. Это и учитывает поправка а.

Кроме того, за счёт сил межмолекулярного взаимодействия реальные газы способны переходить в жидкое состояние, и уравнение Ван-дер-Ваальса довольно точно описывает поведение газов вблизи этого перехода.


Так как в реальном газе расстояние между молекулами сравнительно невелико, молекула должна пролететь меньшее расстояние, чтобы удариться о стенку. Поэтому при очень больших давлениях давление на стенку возрастает, и это учитывает поправка b.

Уравнение Ван-дер-Ваальса применяется, в частности, при определении параметров пара в теплотехнике и теплотехнике, при исследовании сжижения газов.

Примеры решения задач

ПРИМЕР 1

Задание Какую температуру имеет азот 2 грамма, занимающий объём 800 см при давлении 0,2 МПа, если его рассматривать как реальный газ?
Решение Для удобства переведем значения величин в систему СИ:

800 см 3 = 0,0008 м 3 ;

0,2 МПа = 2 10 5 Па.

Табличные значения поправок a и b для азота:

a = 0,136 Па м 6 /моль 2 ;

b = 3,85 10 -5 м 3 /моль.

Определим, сколько молей содержится в 4 г . Учтём, что водород – двухатомный газ, поэтому его молекулярная масса М – сумма двух атомных масс водорода А.

0,071 моль.

Выразим температуру из уравнения Ван-дер-Ваальса:

Ответ

ПРИМЕР 2

Задание Вычислить поправки a и b в уравнении Ван-дер-Ваальса для азота, если известны критическая температура Т кр = 126 К и критическое давление р кр = 3,39 МПа.

Решение Помножив уравнение Ван-дер-Ваальса на и разделив на p, получим кубическое уравнение относительно объема:

Это уравнение имеет три корня. В точке перегиба, показанной на рисунке, все эти корни действительны и равны друг другу. Точка перегиба и есть критической точкой, в которой газообразная фаза переходит в жидкую.

Чтобы найти критические параметры, воспользуемся свойствами точки перегиба: первая и уравнения обращаются в нуль.

Решим эти уравнения относительно объема и температуры, получим критические параметры:

Выразив давление из уравнения Ван-дер-Ваальса и записав это уравнение для критических параметров, получим:

Подставим в это уравнение , и после решения получим:

Газовые законы, рассмотренные в предыдущих разделах, точно выполняются только для идеальных газов, которые не конденсируются при охлаждении их вплоть до абсолютного нуля температуры.

Свойства большинства газов близки к свойствам идеального газа , когда они находятся при температурах, достаточно далеких от точки конденсации, т. е. когда между молекулами отсутствует взаимодействие и когда собственный объем молекул газа мал по сравнению с объемом газа.

Вблизи точки конденсации (при высоком давлении и низкой температуре) свойство газов значительно отличается от свойств идеального газа. В этих случаях говорят о реальных газах.

Уравнение состояния для 1-го моля идеального газа (V m - молярный объем) видоизменяется в случае реальных газов.

Для реальных газов необходим учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул , сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не V m , а V m - b , b - объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

где a - постоянная Ван-дер-Ваальса , характеризующая силы межмолекулярного притяжения.

Вводя поправки в уравнение для идеального газа, получим уравнение Ван-дер-Ваальса для 1-го моля газа

Учитывая, что , получим уравнение для произвольного количества вещества :

Поправки Ван-дер-Ваальса (a и b ) являются постоянными для каждого газа величинами. Для их определения записывают уравнения для двух известных из опыта состояний газа и решаются относительно a и b .

Уравнение (9.45) можно записать в виде:

При заданных p и T - это уравнение третьей степени относительно V m , следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни.

Изотермами Ван-дер-Ваальса называются кривые зависимости p от V m при заданных T, определяемые уравнением Ван-дер-Ваальса для моля газа .

При некоторой температуре T k - критической температуре - на изотерме (рис. 9.11) только одна точка перегиба (в этой точке касательная к ней параллельна оси абсцисс). Точка K - критическая точка , соответствующие этой точке объем V k и давление p k называются также критическими . Изотерма при T k называется критической изотермой .


При высокой температуре (T > T k ) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При низкой температуре (T) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Изотермам при низкой температуре (T < T k ) одному значению давления например, p 1 соответствует три значения объема V 1 , V 2 и V 3 , а при T > T k — одно значение объема. В критической точке все три объема (три корня) совпадают и равны V k .

Рассмотрим изотерму при T < T k на рис. 9.12.

Рис. 9.12 Рис. 9.13

На участках 1-3 и 5-7 при уменьшении объема V m давление p возрастает. На участке 3-5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма имеет вид ломанной линии 7-6-2-1. Часть 7-6 отвечает газообразному состоянию, а часть 2-1 — жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества.

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колокообразная кривая (рис. 9.13), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму p , V m под изотермой на три области: под колокообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар ), слева от нее находится область жидкого состояния, а справа - область пара . Пар - вещество, находящееся в газообразном состоянии при температуре ниже критической. Насыщенный пар - пар, находящийся в равновесии со своей жидкостью.

Задачи к главам 8, 9

1. Рассмотрим модель идеального газа, заключенного в сосуд. Завышены или занижены по сравнению с реальным газом (при заданных V и Т ) значения: а) внутренней энергии; б) давления газа на стенку сосуда?

2. Внутренняя энергия некоторого газа 55 МДж, причем на долю энергии вращательного движения приходится 22 МДж. Сколько атомов в молекуле данного газа?

3. Молекулы какого из перечисленных газов, входящих в состав воздуха, в равновесном состоянии обладают наибольшей средней арифметической скоростью? 1)N 2 ; 2) О 2 ; 3) H 2 ; 4) CO 2 .

4. Некоторый газ с неизменной массой переводится из одного равновесного состояния в другое. Изменяется ли в распределении молекул по скоростям: а) положение максимума кривой Максвела; б) площадь под этой кривой?

5. Объем газа увеличивается, а температура уменьшается. Как изменяется давление? Масса постоянна.

6. При адиабатном расширении газа объем его изме-няется от V 1 до V 2 . Сравнить отношения давлений (p 1 /p 2 ), если газ: а) одноатомный; б) двухатомный.

7. Аэростат с эластичной герметической оболочкой поднимается в атмосфере. Температура и давление воздуха уменьшаются с высотой. Зависит ли подъемная сила аэростата: а) от давления воздуха; б) от температуры?

8. На рисунке изображены адиабаты для двух газов H 2 и Ar. Указать какие графики соответствуют H 2 . 1)I, III; 2)I, IV; 3)II, III; 4)II,IV.

9. Сравнить работы расширения газа при изотермическом изменении объема от 1 до 2 м 3 и от 2 до 4 м 3 .

10. Газ, расширяясь, переходит из одного и того же состояния с объемом V 1 до объема V 2: а) изобарно; б) адиабатно; в) изотермически. В каких процессах газ совершает наименьшую и наибольшую работы?

11. Какой из указанных газов при комнатной температуре имеет наибольшую удельную теплоемкость?

1) O 2 ; 2) H 2 ; 3) He; 4) Ne; 5) I 2 .

12. Как изменяется внутренняя энергия газа в процессах расширения: а) в изобарном; б) в адиабатном?

13. Дан неизвестный газ. Можно ли узнать, какой это газ, если заданны:

а) p , V , T , m ; б) p , T , r; в) g, С V ? К газу применима классическая теория теплоемкостей.

14. Определить знаки молярной теплоемкости газа (m =const, молекулы газа жесткие) в процессе, для которого T 2 V= const, если газ: а) одноатомный; б) двухатомный.

15. Перейдем от модели идеального газа к модели, в которой учитываются силы притяжения между молекулами. Как изменяются молярные теплоемкости C V и C p при заданных V и T ?

16. Идеальный газ, содержащий N молекул, расширяется при постоянной температуре. По какому закону увеличивается число микросостояний газа w ? 1) w ~V ; 2) w ~V N ; 3) w ~ lnV ; 4) не приведено верного соотношения.